Results 1  10
of
13,048
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 533 (22 self)
 Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanulysis.)
Hiding the InputSize in Secure TwoParty Computation ∗
"... In the setting of secure multiparty computation, a set of parties wish to compute a joint function of their inputs, while preserving properties like privacy, correctness, and independence of inputs. One security property that has typically not been considered in the past relates to the length or siz ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
or size of the parties inputs. This is despite the fact that in many cases the size of a party’s input can be confidential. The reason for this omission seems to have been the folklore belief that, as with encryption, it is impossible to carry out nontrivial secure computation while hiding the size
The Role of Input Size and Generativity in Simulating Language Acquisition
"... This paper presents an analysis of the role of input size and generativity (ability to produce novel utterances) in simulating developmental data on a phenomenon in first language acquisition. An existing model that has already simulated the basic phenomenon is trained on input sets of varying sizes ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
This paper presents an analysis of the role of input size and generativity (ability to produce novel utterances) in simulating developmental data on a phenomenon in first language acquisition. An existing model that has already simulated the basic phenomenon is trained on input sets of varying
A blocksorting lossless data compression algorithm
, 1994
"... We describe a blocksorting, lossless data compression algorithm, and our implementation of that algorithm. We compare the performance of our implementation with widely available data compressors running on the same hardware. The algorithm works by applying a reversible transformation to a block o ..."
Abstract

Cited by 809 (5 self)
 Add to MetaCart
statistical modelling techniques. The size of the input block must be large (a few kilobytes) to achieve good compression.
Multivariable Feedback Control: Analysis
 span (B∗) und Basis B∗ = { ω1
, 2005
"... multiinput, multioutput feedback control design for linear systems using the paradigms, theory, and tools of robust control that have arisen during the past two decades. The book is aimed at graduate students and practicing engineers who have a basic knowledge of classical control design and st ..."
Abstract

Cited by 564 (24 self)
 Add to MetaCart
multiinput, multioutput feedback control design for linear systems using the paradigms, theory, and tools of robust control that have arisen during the past two decades. The book is aimed at graduate students and practicing engineers who have a basic knowledge of classical control design
Iterative decoding of binary block and convolutional codes
 IEEE TRANS. INFORM. THEORY
, 1996
"... Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the soft chann ..."
Abstract

Cited by 610 (43 self)
 Add to MetaCart
Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the soft
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 561 (12 self)
 Add to MetaCart
Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given
The cascadecorrelation learning architecture
 Advances in Neural Information Processing Systems 2
, 1990
"... CascadeCorrelation is a new architecture and supervised learning algorithm for artificial neural networks. Instead of just adjusting the weights in a network of fixed topology, CascadeCorrelation begins with a minimal network, then automatically trains and adds new hidden units one by one, creatin ..."
Abstract

Cited by 801 (6 self)
 Add to MetaCart
, creating a multilayer structure. Once a new hidden unit has been added to the network, its inputside weights are frozen. This unit then becomes a permanent featuredetector in the network, available for producing outputs or for creating other, more complex feature detectors. The Cascade
Results 1  10
of
13,048