• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 23,689
Next 10 →

Frugal path mechanisms

by Aaron Archer, Éva Tardos , 2002
"... We consider the problem of selecting a low cost s − t path in a graph, where the edge costs are a secret known only to the various economic agents who own them. To solve this problem, Nisan and Ronen applied the celebrated Vickrey-Clarke-Groves (VCG) mechanism, which pays a premium to induce the edg ..."
Abstract - Cited by 119 (2 self) - Add to MetaCart
problem, which is to design a mechanism that selects a path and induces truthful cost revelation without paying such a high premium. This paper contributes negative results on the frugal path problem. On two large classes of graphs, including ones having three node-disjoint s − t paths, we prove

Regularization paths for generalized linear models via coordinate descent

by Jerome Friedman, Trevor Hastie, Rob Tibshirani , 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract - Cited by 724 (15 self) - Add to MetaCart
elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

Molecular Computation Of Solutions To Combinatorial Problems

by Leonard M. Adleman , 1994
"... The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying ..."
Abstract - Cited by 773 (6 self) - Add to MetaCart
The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility

Theoretical improvements in algorithmic efficiency for network flow problems

by Jack Edmonds, Richard M. Karp - , 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimum-cost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract - Cited by 560 (0 self) - Add to MetaCart
required by earlier algorithms. First, the paper states the maximum flow problem, gives the Ford-Fulkerson labeling method for its solution, and points out that an improper choice of flow augmenting paths can lead to severe computational difficulties. Then rules of choice that avoid these difficulties

A new approach to the maximum flow problem

by Andrew V. Goldberg, Robert E. Tarjan - JOURNAL OF THE ACM , 1988
"... All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract - Cited by 672 (33 self) - Add to MetaCart
All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based

FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem

by Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit - In Proceedings of the AAAI National Conference on Artificial Intelligence , 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-base ..."
Abstract - Cited by 599 (10 self) - Add to MetaCart
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter

Frugality in Path Auctions

by Edith Elkind, Amit Sahai, Ken Steiglitz - In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms , 2003
"... We consider the problem of picking (buying) an inexpensive s t path in a graph where edges are owned by independent (selfish) agents, and the cost of an edge is known to its owner only. We study the problem of finding frugal mechanisms for this task, i.e. we investigate the payments the buyer m ..."
Abstract - Cited by 63 (2 self) - Add to MetaCart
We consider the problem of picking (buying) an inexpensive s t path in a graph where edges are owned by independent (selfish) agents, and the cost of an edge is known to its owner only. We study the problem of finding frugal mechanisms for this task, i.e. we investigate the payments the buyer

Alternating-time Temporal Logic

by Rajeev Alur, Thomas Henzinger, Orna Kupferman - Journal of the ACM , 1997
"... Temporal logic comes in two varieties: linear-time temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branching-time temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract - Cited by 620 (53 self) - Add to MetaCart
Temporal logic comes in two varieties: linear-time temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branching-time temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general

Randomized kinodynamic planning

by Steven M. Lavalle, James J. Kuffner, Jr. - THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2001; 20; 378 , 2001
"... This paper presents the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design). The task is to determine control inputs to drive a robot from an initial configuration and velocity to a goal configuration and velocity while obeying physically based ..."
Abstract - Cited by 626 (35 self) - Add to MetaCart
dynamical models and avoiding obstacles in the robot’s environment. The authors consider generic systems that express the nonlinear dynamics of a robot in terms of the robot’s high-dimensional configuration space. Kinodynamic planning is treated as a motion-planning problem in a higher dimensional state

Routing in a Delay Tolerant Network

by Sushant Jain, Kevin Fall, Rabin Patra , 2004
"... We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property that no con ..."
Abstract - Cited by 621 (8 self) - Add to MetaCart
We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property
Next 10 →
Results 1 - 10 of 23,689
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University