• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,026
Next 10 →

The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices

by Zhouchen Lin, Minming Chen, Leqin Wu, Yi Ma , 2009
"... ..."
Abstract - Cited by 329 (26 self) - Add to MetaCart
Abstract not found

Exact Recovery of Sparsely-Used Dictionaries

by Daniel A. Spielman, Huan Wang, John Wright - 25TH ANNUAL CONFERENCE ON LEARNING THEORY , 2012
"... We consider the problem of learning sparsely used dictionaries with an arbitrary square dictionary and a random, sparse coefficient matrix. We prove that O(n log n) samples are sufficient to uniquely determine the coefficient matrix. Based on this proof, we design a polynomial-time algorithm, called ..."
Abstract - Cited by 38 (2 self) - Add to MetaCart
, called Exact Recovery of Sparsely-Used Dictionaries (ER-SpUD), and prove that it probably recovers the dictionary and coefficient matrix when the coefficient matrix is sufficiently sparse. Simulation results show that ER-SpUD reveals the true dictionary as well as the coefficients with probability higher

WHEN “EXACT RECOVERY ” IS EXACT RECOVERY IN COMPRESSED SENSING SIMULATION

by Bob L. Sturm
"... In a simulation of compressed sensing (CS), one must test whether the recovered solution x ̂ is the true solution x, i.e., “exact recovery. ” Most CS simulations employ one of two criteria: 1) the recovered support is the true support; or 2) the normalized squared error is less than 2. We analyze th ..."
Abstract - Add to MetaCart
In a simulation of compressed sensing (CS), one must test whether the recovered solution x ̂ is the true solution x, i.e., “exact recovery. ” Most CS simulations employ one of two criteria: 1) the recovered support is the true support; or 2) the normalized squared error is less than 2. We analyze

Exact Recovery in the Stochastic Block Model

by Eira Georgina Hall
"... The stochastic block model (SBM) with two communities, or equivalently the planted partition model, is a popular model of random graph exhibiting a cluster behaviour. In its simplest form, the graph has two equally sized clusters and vertices connect with probability p within clusters and q across c ..."
Abstract - Add to MetaCart
clusters. In the past two decades, a large body of literature in statistics and computer science has focused on providing lower-bounds on the scaling of |p − q | to ensure exact recovery. This paper identifies the sharp threshold for exact recovery. If α = pn / log(n) and β = qn / log(n) are constant (with

WHEN “EXACT RECOVERY ” IS EXACT RECOVERY IN COMPRESSED SENSING SIMULATION

by Aalborg Universitet, Sturm Bob L, Bob L. Sturm , 2012
"... Accepted manuscript, peer reviewed version ..."
Abstract - Add to MetaCart
Accepted manuscript, peer reviewed version

Stable signal recovery from incomplete and inaccurate measurements,”

by Emmanuel J Candès , Justin K Romberg , Terence Tao - Comm. Pure Appl. Math., , 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract - Cited by 1397 (38 self) - Add to MetaCart
for almost any set of n coefficients provided that the number of nonzeros is of the order of n/(log m) 6 . In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights into the exact recovery phenomenon discussed in earlier papers. The methodology

Exact Matrix Completion via Convex Optimization

by Emmanuel J. Candès, Benjamin Recht , 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract - Cited by 873 (26 self) - Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can

Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?

by Emmanuel J. Candès , Terence Tao , 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract - Cited by 1513 (20 self) - Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear

Exact Recovery Threshold in the Binary Censored Block Model

by Jiaming Xu, Joint Work Bruce Hajek, Yihong Wu , 2015
"... Binary censored block model G = ([n], E) and ∈ [0, 1/2] 1 Color the vertices in green or red arbitrarily 2 If endpoints in same color, color edge in blue (orange) w.p. 1 − () ..."
Abstract - Add to MetaCart
Binary censored block model G = ([n], E) and ∈ [0, 1/2] 1 Color the vertices in green or red arbitrarily 2 If endpoints in same color, color edge in blue (orange) w.p. 1 − ()

Fuzzy extractors: How to generate strong keys from biometrics and other noisy data

by Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam Smith , 2008
"... We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying mater ..."
Abstract - Cited by 535 (38 self) - Add to MetaCart
if the input changes, as long as it remains reasonably close to the original. Thus, R can be used as a key in a cryptographic application. A secure sketch produces public information about its input w that does not reveal w, and yet allows exact recovery of w given another value that is close to w. Thus
Next 10 →
Results 1 - 10 of 1,026
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University