Results 1  10
of
15,390
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 881 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
Parallel discrete event simulation
, 1990
"... Parallel discrete event simulation (PDES), sometimes I called distributed simulation, refers to the execution of a single discrete event simulation program on a parallel computer. PDES has attracted a considerable amount of interest in recent years. From a pragmatic standpoint, this interest arises ..."
Abstract

Cited by 818 (39 self)
 Add to MetaCart
Parallel discrete event simulation (PDES), sometimes I called distributed simulation, refers to the execution of a single discrete event simulation program on a parallel computer. PDES has attracted a considerable amount of interest in recent years. From a pragmatic standpoint, this interest arises
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes
A public key cryptosystem and a signature scheme based on discrete logarithms
 ADV. IN CRYPTOLOGY, SPRINGERVERLAG
, 1985
"... A new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. ..."
Abstract

Cited by 1551 (0 self)
 Add to MetaCart
A new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields.
Virtual time
 ACM Transactions on Programming Languages and Systems
, 1985
"... Virtual time is a new paradigm for organizing and synchronizing distributed systems which can be applied to such problems as distributed discrete event simulation and distributed database concurrency control. Virtual time provides a flexible abstraction of real time in much the same way that virtua ..."
Abstract

Cited by 980 (7 self)
 Add to MetaCart
Virtual time is a new paradigm for organizing and synchronizing distributed systems which can be applied to such problems as distributed discrete event simulation and distributed database concurrency control. Virtual time provides a flexible abstraction of real time in much the same way
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1345 (23 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1051 (76 self)
 Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
 J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract

Cited by 557 (29 self)
 Add to MetaCart
the "discrete gamma model," uses several categories of rates to approximate the gamma distribution, with equal probability for each category. The mean of each category is used to represent all the rates falling in the category. The performance of this method is found to be quite good
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 561 (18 self)
 Add to MetaCart
as multinomial distributions over a discrete vocabulary, and the HMM parameters are set to maximize the likelihood of the observations. This paper presents a new Markovian sequence model, closely related to HMMs, that allows observations to be represented as arbitrary overlapping features (such as word
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 726 (8 self)
 Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass
Results 1  10
of
15,390