Results 1  10
of
17,224
An Introduction to the Kalman Filter
 UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
, 1995
"... In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area o ..."
Abstract

Cited by 1146 (13 self)
 Add to MetaCart
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area
Understanding and Using Context
 Personal and Ubiquitous Computing
, 2001
"... Context is a poorly used source of information in our computing environments. As a result, we have an impoverished understanding of what context is and how it can be used. In this paper, we provide an operational definition of context and discuss the different ways that context can be used by contex ..."
Abstract

Cited by 865 (0 self)
 Add to MetaCart
, which we believe will provide additional support to application designers. 1. Introduction Humans are quite successful at conveying ideas to each other and reacting appropriately. This is due to many factors: the richness of the language they share, the common understanding of how the world works
The Protein Data Bank
 Nucleic Acids Res
, 2000
"... The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and nearterm plans for the futur ..."
Abstract

Cited by 1387 (24 self)
 Add to MetaCart
for the future development of the resource. INTRODUCTION The Protein Data Bank (PDB) was established at Brookhaven National Laboratories (BNL) (1) in 1971 as an archive for biological macromolecular crystal structures. In the beginning the archive held seven structures, and with each year a handful more were
Improved prediction of signal peptides  SignalP 3.0
 J. MOL. BIOL.
, 2004
"... We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cle ..."
Abstract

Cited by 654 (7 self)
 Add to MetaCart
peptide discrimination improvement is mainly due to the elimination of false positive predictions, as well as the introduction of a new discrimination score for the neural network. The new method has also been benchmarked against other available methods. Predictions can be made at the publicly available
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 516 (18 self)
 Add to MetaCart
in low and high level computer vision. The unification is made possible due to a recent advance in MRF modeling for high level object recognition. Such unification provides a systematic approach for vision modeling based on sound mathematical principles. 1 Introduction Since its beginning in early 1960
Consensus and cooperation in networked multiagent systems
 Proceedings of the IEEE
, 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An ove ..."
Abstract

Cited by 807 (4 self)
 Add to MetaCart
Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
. Introduction The task of calculating posterior marginals on nodes in an arbitrary Bayesian network is known to be NP hard In this paper we investigate the approximation performance of "loopy belief propagation". This refers to using the wellknown Pearl polytree algorithm [12] on a Bayesian network
Estimating Attributes: Analysis and Extensions of RELIEF
, 1994
"... . In the context of machine learning from examples this paper deals with the problem of estimating the quality of attributes with and without dependencies among them. Kira and Rendell (1992a,b) developed an algorithm called RELIEF, which was shown to be very efficient in estimating attributes. Origi ..."
Abstract

Cited by 474 (25 self)
 Add to MetaCart
Introduction This paper deals with the problem of estimating the quality of attributes with strong dependencies to other attributes which seems to be the key issue of machine learning in general. Namely, for particular problems (e.q. parity problems of higher degrees) the discovering of dependencies between
Bilattices and the Semantics of Logic Programming
, 1989
"... Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on prob ..."
Abstract

Cited by 446 (13 self)
 Add to MetaCart
Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics
Mining Quantitative Association Rules in Large Relational Tables
, 1996
"... We introduce the problem of mining association rules in large relational tables containing both quantitative and categorical attributes. An example of such an association might be "10% of married people between age 50 and 60 have at least 2 cars". We deal with quantitative attributes by fi ..."
Abstract

Cited by 444 (3 self)
 Add to MetaCart
by finepartitioning the values of the attribute and then combining adjacent partitions as necessary. We introduce measures of partial completeness which quantify the information lost due to partitioning. A direct application of this technique can generate too many similar rules. We tackle this problem by using a
Results 1  10
of
17,224