Results 1  10
of
1,227
Channel assignment on stronglysimplicial graphs
 In Proc. 17th Int. Symp. Parallel and Distributed Processing (IPDPS
, 2003
"... Given a vector ( 1 � 2�::: � t) of non increasing positive integers, and an undirected graph G = (V�E), an L ( 1 � 2�::: � t)coloring of G is a function f from the vertex set V to a set of nonnegative integers such that jf(u) ; f(v)j i, if d(u � v) = i � 1 i t� where d(u � v) is the distance (i.e. ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Given a vector ( 1 � 2�::: � t) of non increasing positive integers, and an undirected graph G = (V�E), an L ( 1 � 2�::: � t)coloring of G is a function f from the vertex set V to a set of nonnegative integers such that jf(u) ; f(v)j i, if d(u � v) = i � 1 i t� where d(u � v) is the distance (i
Progressive Simplicial Complexes
, 1997
"... In this paper, we introduce the progressive simplicial complex (PSC) representation, a new format for storing and transmitting triangulated geometric models. Like the earlier progressive mesh (PM) representation, it captures a given model as a coarse base model together with a sequence of refinement ..."
Abstract

Cited by 169 (2 self)
 Add to MetaCart
In this paper, we introduce the progressive simplicial complex (PSC) representation, a new format for storing and transmitting triangulated geometric models. Like the earlier progressive mesh (PM) representation, it captures a given model as a coarse base model together with a sequence
Which Problems Have Strongly Exponential Complexity?
 Journal of Computer and System Sciences
, 1998
"... For several NPcomplete problems, there have been a progression of better but still exponential algorithms. In this paper, we address the relative likelihood of subexponential algorithms for these problems. We introduce a generalized reduction which we call SubExponential Reduction Family (SERF) t ..."
Abstract

Cited by 242 (11 self)
 Add to MetaCart
) that preserves subexponential complexity. We show that CircuitSAT is SERFcomplete for all NPsearch problems, and that for any fixed k, kSAT, kColorability, kSet Cover, Independent Set, Clique, Vertex Cover, are SERFcomplete for the class SNP of search problems expressible by second order existential
VertexUnfoldings of Simplicial Manifolds
"... We present an algorithm to unfold any triangulated 2manifold (in particular, any simplicial polyhedron) into a nonoverlapping, connected planar layout in linear time. The manifold is cut only along its edges. The resulting layout is connected, but it may have a disconnected interior; the triangles ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
We present an algorithm to unfold any triangulated 2manifold (in particular, any simplicial polyhedron) into a nonoverlapping, connected planar layout in linear time. The manifold is cut only along its edges. The resulting layout is connected, but it may have a disconnected interior
Vertexunfoldings of simplicial polyhedra
, 2008
"... We present two algorithms for unfolding the surface of any polyhedron, all of whose faces are triangles, to a nonoverlapping, connected planar layout. The surface is cut only along polyhedron edges. The layout is connected, but it may have a disconnected interior: the triangles are connected at vert ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We present two algorithms for unfolding the surface of any polyhedron, all of whose faces are triangles, to a nonoverlapping, connected planar layout. The surface is cut only along polyhedron edges. The layout is connected, but it may have a disconnected interior: the triangles are connected at vertices, but not necessarily joined along edges.
VERTEX COLORINGS OF SIMPLICIAL COMPLEXES
"... 1.1. Notation and the basic definition 2 2. Davis–Januszkiewicz spaces 3 3. The Stanley–Reisner face algebra 4 ..."
Abstract
 Add to MetaCart
1.1. Notation and the basic definition 2 2. Davis–Januszkiewicz spaces 3 3. The Stanley–Reisner face algebra 4
A Computational Approach for Corner and Vertex Detection
 International Journal of Computer Vision
, 1992
"... Corners and vertices are strong and useful features in Computer Vision for scene analysis, stereo matching and motion analysis. This paper deals with the development of a computational approach to these important features. We consider first a corner model and study analytically its behavior once it ..."
Abstract

Cited by 132 (1 self)
 Add to MetaCart
Corners and vertices are strong and useful features in Computer Vision for scene analysis, stereo matching and motion analysis. This paper deals with the development of a computational approach to these important features. We consider first a corner model and study analytically its behavior once
Representing VertexBased Simplicial MultiComplexes
, 2001
"... In this paper, we consider the problem of representing a multiresolution geometric model, called a Simplicial MultiComplex (SMC), in a compact way. We present encoding schemes for both two and threedimensional SMCs built through a vertex insertion (removal) simplification strategy. We show that a ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
In this paper, we consider the problem of representing a multiresolution geometric model, called a Simplicial MultiComplex (SMC), in a compact way. We present encoding schemes for both two and threedimensional SMCs built through a vertex insertion (removal) simplification strategy. We show
Results 1  10
of
1,227