• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Cached

  • Download as a PDF

Download Links

  • [courses.ece.uiuc.edu]
  • [www.crhc.uiuc.edu]
  • [courses.engr.illinois.edu]
  • [courses.engr.illinois.edu]
  • [courses.engr.illinois.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Unknown Authors
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{_,
    author = {},
    title = {},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper discusses three techniques useful in relaxing the constraints imposed by control flow on parallelism: control dependence analysis, executing multiple flows of control simultaneously, and speculative execution. We evaluate these techniques by using trace simulations to find the limits of parallelism for machines that employ different combinations of these techniques. We have three major results. First, local regions of code have limited parallelism, and control dependence analysis is useful in extracting global parallelism from different parts of a program. Second, a superscalar processor is fundamentally limited because it cannot execute independent regions of code concurrently. Higher performance can be obtained with machines, such as multiprocessors and dataflow machines, that can simultaneously follow multiple flows of control. Finally, without speculative execution to allow instructions to execute before their control dependences are resolved, only modest amounts of parallelism can be obtained for programs with complex control flow. 1

Keyphrases

speculative execution    multiple flow    control dependence    different combination    modest amount    dataflow machine    trace simulation    global parallelism    control dependence analysis    execute independent region    superscalar processor    different part    control flow    complex control flow    dependence analysis    major result    local region   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University