• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

Dynamic classifier combination in hybrid speech recognition systems using utterance-level confidence values (1999)

Cached

Download Links

  • [www.techfak.uni-bielefeld.de]
  • [ftp.icsi.berkeley.edu]
  • [http.icsi.berkeley.edu]
  • [ftp.icsi.berkeley.edu]
  • [www.icsi.berkeley.edu]
  • [www1.icsi.berkeley.edu]
  • [www.techfak.uni-bielefeld.de]
  • [ssli.ee.washington.edu]
  • [melodi.ee.washington.edu]
  • [melodi.ee.washington.edu]
  • [melodi.ee.washington.edu]
  • [melodi.ee.washington.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Katrin Kirchhoff , Ag Angewandte Informatik , Technische Fakultät
Venue:Proceedings ICASSP-99
Citations:20 - 3 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Kirchhoff99dynamicclassifier,
    author = {Katrin Kirchhoff and Ag Angewandte Informatik and Technische Fakultät},
    title = {Dynamic classifier combination in hybrid speech recognition systems using utterance-level confidence values},
    booktitle = {Proceedings ICASSP-99},
    year = {1999},
    pages = {693--696}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

A recent development in the hybrid HMM/ANN speech recognition paradigm is the use of several subword classifiers, each of which provides different information about the speech signal. Although the combining methods have obtained promising results, the strategies so far proposed have been relatively simple. In most cases frame-level subword unit probabilities are combined using an unweighted product or sum rule. In this paper, we argue and empirically demonstrate that the classifier combination approach can benefit from a dynamically weighted combination rule, where the weights are derived from higher-than-frame-level confidence values. 1.

Keyphrases

utterance-level confidence value    hybrid speech recognition system    sum rule    combination approach    recent development    case frame-level subword unit probability    unweighted product    higher-than-frame-level confidence value    several subword classifier    different information    weighted combination rule    speech signal    promising result   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2016 The Pennsylvania State University