• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Visual categorization with bags of keypoints (2004)

Cached

  • Download as a PDF

Download Links

  • [www.xrce.xerox.com]
  • [www.cs.utexas.edu]
  • [www.cs.princeton.edu:80]
  • [www.cs.princeton.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.unr.edu]
  • [www.cse.unr.edu]
  • [www.xrce.xerox.com]
  • [www.cs.cmu.edu]
  • [www.cse.unr.edu]
  • [www.cs.cmu.edu]
  • [www.ece.uvic.ca]
  • [www-2.cs.cmu.edu]
  • [www.xrce.xerox.com]
  • [www.xrce.xerox.com]
  • [www.micc.unifi.it]
  • [www.cse.unr.edu]
  • [217.109.185.161]
  • [www.xrce.xerox.com]
  • [www.xrce.xerox.com]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.vision.jhu.edu]
  • [www.cs.cmu.edu]
  • [haonanyu.com]
  • [www.cse.unr.edu]
  • [www.ece.uvic.ca]

  • Other Repositories/Bibliography

  • CiteULike
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Gabriella Csurka , Christopher R. Dance , Lixin Fan , Jutta Willamowski , Cédric Bray
Venue:In Workshop on Statistical Learning in Computer Vision, ECCV
Citations:1005 - 14 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Csurka04visualcategorization,
    author = {Gabriella Csurka and Christopher R. Dance and Lixin Fan and Jutta Willamowski and Cédric Bray},
    title = {Visual categorization with bags of keypoints},
    booktitle = {In Workshop on Statistical Learning in Computer Vision, ECCV},
    year = {2004},
    pages = {1--22}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors of image patches. We propose and compare two alternative implementations using different classifiers: Naïve Bayes and SVM. The main advantages of the method are that it is simple, computationally efficient and intrinsically invariant. We present results for simultaneously classifying seven semantic visual categories. These results clearly demonstrate that the method is robust to background clutter and produces good categorization accuracy even without exploiting geometric information. 1.

Keyphrases

visual categorization    semantic visual category    main advantage    affine invariant descriptor    vector quantization    object class    image patch    different classifier    natural image    geometric information    alternative implementation    novel method    generic visual categorization    object content    good categorization accuracy    present result   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University