• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers (2002)

Cached

  • Download as a PDF

Download Links

  • [cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [www.aaai.org]
  • [www.aaai.org]
  • [www.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [www.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [papersdb.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [papersdb.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [papersdb.cs.ualberta.ca]
  • [papersdb.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]
  • [webdocs.cs.ualberta.ca]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Russell Greiner , Wei Zhou , Xiaoyuan Su , Bin Shen
Venue:In Proceedings of the Eighteenth Annual National Conference on Artificial Intelligence (AAAI-02
Citations:76 - 8 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Greiner02structuralextension,
    author = {Russell Greiner and Wei Zhou and Xiaoyuan Su and Bin Shen},
    title = {Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers},
    booktitle = {In Proceedings of the Eighteenth Annual National Conference on Artificial Intelligence (AAAI-02},
    year = {2002},
    pages = {167--173}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Bayesian belief nets (BNs) are often used for classification tasks — typically to return the most likely class label for each specified instance. Many BN-learners, however, attempt to find the BN that maximizes a different objective function — viz., likelihood, rather than classification accuracy — typically by first learning an appropriate graphical structure, then finding the maximal likelihood parameters for that structure. As these parameters may not maximize the classification accuracy, “discriminative learners” follow the alternative approach of seeking the parameters that maximize conditional likelihood (CL), over the distribution of instances the BN will have to classify. This paper first formally specifies this task, and shows how it extends standard logistic regression. After analyzing its inherent sample and computational complexity, we present a general algorithm for this task, ELR, which applies to arbitrary BN structures and which works effectively even when given incomplete training data. This paper presents empirical evidence thatELR produces better classifiers than are produced by the standard “generative” algorithms in a variety of situations, especially in common situations where the given BN-structure is incorrect. Keywords: (Bayesian) belief nets, Logistic regression, Classification, PAC-learning, Computational/sample complexity 1

Keyphrases

logistic regression    structural extension    belief net classifier    discriminative parameter learning    classification accuracy    likely class label    incomplete training data    common situation    maximal likelihood parameter    empirical evidence thatelr    appropriate graphical structure    different objective function viz    computational sample complexity    computational complexity    bayesian belief net    discriminative learner    classification task    inherent sample    standard generative algorithm    many bn-learners    bn structure    standard logistic regression    general algorithm    conditional likelihood    belief net    alternative approach   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University