@MISC{_understandingthe, author = {}, title = {Understanding the Interconnection Network of SpiNNaker}, year = {} }
Share
OpenURL
Abstract
SpiNNaker is a massively parallel architecture designed to model large-scale spiking neural networks in (biological) real-time. Its design is based around ad-hoc multi-core System-on-Chips which are interconnected using a two-dimensional toroidal triangular mesh. Neurons are modeled in software and their spikes generate packets that propagate through the on- and inter-chip communication fabric relying on custom-made on-chip multicast routers. This paper models and evaluates large-scale instances of its novel interconnect (more than 65 thousand nodes, or over one million computing cores), focusing on real-time features and fault-tolerance. The key contribution can be summarized as understanding the properties of the feasible topologies and establishing the stable operation of the SpiNNaker under different levels of degradation. First we derive analytically the topological