• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Tracking Loose-limbed People (2004)

Cached

  • Download as a PDF

Download Links

  • [www.cs.brown.edu]
  • [www.cs.brown.edu]
  • [www.cs.brown.edu]
  • [cs.brown.edu]
  • [www.cs.brown.edu]
  • [cs.brown.edu]
  • [cs.brown.edu]
  • [cs.brown.edu]
  • [cs.brown.edu]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [www.gris.informatik.tu-darmstadt.de]
  • [www.gris.tu-darmstadt.de]
  • [cs.brown.edu]
  • [www.gris.informatik.tu-darmstadt.de]
  • [www.visinf.tu-darmstadt.de]
  • [cs.brown.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Leonid Sigal , Sidharth Bhatia , Stefan Roth , Michael J. Black , Michael Isard
Citations:191 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Sigal04trackingloose-limbed,
    author = {Leonid Sigal and Sidharth Bhatia and Stefan Roth and Michael J. Black and Michael Isard},
    title = {Tracking Loose-limbed People},
    year = {2004}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We pose the problem of 3D human tracking as one of inference in a graphical model. Unlike traditional kinematic tree representations, our model of the body is a collection of loosely-connected limbs. Conditional probabilities relating the 3D pose of connected limbs are learned from motioncaptured training data. Similarly, we learn probabilistic models for the temporal evolution of each limb (forward and backward in time). Human pose and motion estimation is then solved with non-parametric belief propagation using a variation of particle filtering that can be applied over a general loopy graph. The loose-limbed model and decentralized graph structure facilitate the use of low-level visual cues. We adopt simple limb and head detectors to provide "bottom-up" information that is incorporated into the inference process at every time-step; these detectors permit automatic initialization and aid recovery from transient tracking failures. We illustrate the method by automatically tracking a walking person in video imagery using four calibrated cameras. Our experimental apparatus includes a marker-based motion capture system aligned with the coordinate frame of the calibrated cameras with which we quantitatively evaluate the accuracy of our 3D person tracker.

Keyphrases

loose-limbed people    calibrated camera    low-level visual cue    loosely-connected limb    automatic initialization    coordinate frame    loose-limbed model    temporal evolution    person tracker    conditional probability    motioncaptured training data    bottom-up information    graph structure    marker-based motion capture system    traditional kinematic tree representation    video imagery    simple limb    aid recovery    inference process    head detector    experimental apparatus    probabilistic model    non-parametric belief propagation    graphical model    general loopy graph    motion estimation   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University