@MISC{Pruhs_and, author = {Kirk Pruhs}, title = {AND}, year = {} }

Share

OpenURL

Abstract

Abstract. Speed scaling is a power management technique that involves dynamically changing the speed of a processor. We study policies for setting the speed of the processor for both of the goals of minimizing the energy used and the maximum temperature attained. The theoretical study of speed scaling policies to manage energy was initiated in a seminal paper by Yao et al. [1995], and we adopt their setting. We assume that the power required to run at speed s is P(s) = sα for some constant α> 1. We assume a collection of tasks, each with a release time, a deadline, and an arbitrary amount of work that must be done between the release time and the deadline. Yao et al. [1995] gave an offline greedy algorithm YDS to compute the minimum energy schedule. They further proposed two online algorithms Average Rate (AVR) and Optimal Available (OA), and showed that AVR is 2α−1αα-competitive with respect to energy. We provide a tight αα bound on the competitive ratio of OA with respect to energy. We initiate the study of speed scaling to manage temperature. We assume that the environment has a fixed ambient temperature and that the device cools according to Newton’s law of cooling. We observe that the maximum temperature can be approximated within a factor of two by the maximum energy used over any interval of length 1/b, where b is the cooling parameter of the