• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

How Iris Recognition Works (2003)

Cached

  • Download as a PDF

Download Links

  • [www.cl.cam.ac.uk]
  • [www.fssl.ru]
  • [www.biometricsecurity.ru]
  • [www2.it.lut.fi]
  • [www.CL.cam.ac.uk]
  • [www.cs.utsa.edu]
  • [www.prip.tuwien.ac.at]
  • [www1.cs.columbia.edu]
  • [www.cl.cam.ac.uk]
  • [www1.cs.columbia.edu]
  • [www.sas.el.utwente.nl]
  • [www1.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [pages.cs.wisc.edu]
  • [www.cs.columbia.edu]
  • [sse.tongji.edu.cn]
  • [www.cl.cam.ac.uk]
  • [sse.tongji.edu.cn]
  • [www1.cs.columbia.edu]
  • [www.cl.cam.ac.uk]
  • [www.cl.cam.ac.uk]
  • [www.cl.cam.ac.uk]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by John Daugman
Citations:509 - 4 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Daugman03howiris,
    author = {John Daugman},
    title = {How Iris Recognition Works},
    year = {2003}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Algorithms developed by the author for recogniz-ing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statis-tical independence on iris phase structure encoded by multi-scale quadrature wavelets. The combinatorial complexity of this phase information across different persons spans about 244 degrees of freedom and gen-erates a discrimination entropy of about 3.2 bits/mm over the iris, enabling real-time decisions about per-sonal identity with extremely high confidence. The high confidence levels are important because they al-low very large databases to be searched exhaustively (one-to-many “identification mode”) without making any false matches, despite so many chances. Biomet-rics lacking this property can only survive one-to-one (“verification”) or few comparisons. This paper ex-plains the algorithms for iris recognition, and presents the results of 2.3 million comparisons among eye im-ages acquired in trials in Britain, the USA, and Japan. 1

Keyphrases

iris recognition work    false match    comparison test    statis-tical independence    multi-scale quadrature wavelet    recognition principle    discrimination entropy    high confidence    phase information    high confidence level    iris phase structure    recogniz-ing person    iris recognition    different person span    large database    many chance    combinatorial complexity    one-to-many identification mode    per-sonal identity    iris pattern    eye im-ages    real-time decision    laboratory trial   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University