• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Fast Planning Through Planning Graph Analysis (1995)

Cached

  • Download as a PDF

Download Links

  • [www.cs.cmu.edu]
  • [reports.adm.cs.cmu.edu]
  • [www-i5.informatik.rwth-aachen.de]
  • [www.cogsys.wiai.uni-bamberg.de]
  • [www.cs.cmu.edu]
  • [ai.unibo.it]
  • [www.cs.cmu.edu]
  • [www.eecs.harvard.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www-cgi.cs.cmu.edu.]
  • [www-cgi.cs.cmu.edu]
  • [www.lb.cs.cmu.edu]
  • [www.lb.cs.cmu.edu]
  • [www-cgi.cs.cmu.edu]
  • [www-cgi.cs.cmu.edu.]
  • [www-cgi.cs.cmu.edu]
  • [www-cgi.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.eecs.ucf.edu]
  • [www.cs.nott.ac.uk]
  • [aass.oru.se]
  • [www.cs.ucf.edu]
  • [www.eecs.ucf.edu]
  • [www.eecs.ucf.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Avrim L. Blum , Merrick L. Furst
Venue:ARTIFICIAL INTELLIGENCE
Citations:1166 - 3 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Blum95fastplanning,
    author = {Avrim L. Blum and Merrick L. Furst},
    title = {Fast Planning Through Planning Graph Analysis},
    journal = {ARTIFICIAL INTELLIGENCE},
    year = {1995},
    volume = {90},
    number = {1},
    pages = {1636--1642}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We introduce a new approach to planning in STRIPS-like domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partial-order plan, or states that no valid plan exists. We provide empirical evidence in favor of this approach, showing that Graphplan outperforms the total-order planner, Prodigy, and the partial-order planner, UCPOP, on a variety of interesting natural and artificial planning problems. We also give empirical evidence that the plans produced by Graphplan are quite sensible. Since searches made by this approach are fundamentally different from the searches of other common planning methods, they provide a new perspective on the planning problem.

Keyphrases

planning graph analysis    empirical evidence    artificial planning problem    shortest possible partial-order plan    valid plan    planning problem    new planner    planning graph    strips-like domain    new approach    total-order planner    partial-order planner    compact structure    new perspective   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University