• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Orthogonal Projection

Cached

  • Download as a PDF

Download Links

  • [www.mat.ub.edu]
  • [www.emis.de]
  • [siba-sinmemis.unile.it]
  • [www.kurims.kyoto-u.ac.jp]
  • [www.maths.tcd.ie]
  • [www.cirm.univ-mrs.fr]
  • [emis.u-strasbg.fr]
  • [emis.math.tifr.res.in]
  • [ftp.gwdg.de]
  • [emis.maths.tcd.ie]
  • [www.math.ethz.ch]
  • [www.maths.soton.ac.uk]
  • [www.univie.ac.at]
  • [emis.maths.adelaide.edu.au]
  • [emis.library.cornell.edu]
  • [ftp.gwdg.de]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Cristina Sburlan , Silvia Fulina , M ∂u
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Sburlan_orthogonalprojection,
    author = {Cristina Sburlan and Silvia Fulina and M ∂u},
    title = {Orthogonal Projection},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Our aim is to present a numerical method for solving elliptical problems by theoretical discretization. In order to do it, a complete system of eigenfunctions of the Laplacean and the compact imbedding of H 1 (Ω) in L 2 (Ω) are used in the paper. Let Ω be a bounded domain in R M, with a quite smooth boundary such that we can apply the Green’s formula and the Sobolev-Kondrashov imbedding theorem (see [PS]). Consider the following mixed problem: Lu = f in Ω, u = u0 on Γ ⊆ ∂Ω, meas(Γ)> 0 (1)

Keyphrases

orthogonal projection    sobolev-kondrashov imbedding theorem    compact imbedding    bounded domain    numerical method    green formula    mixed problem    complete system    theoretical discretization    quite smooth boundary    elliptical problem   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University