• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Greed is Good: Algorithmic Results for Sparse Approximation (2004)

Cached

  • Download as a PDF

Download Links

  • [users.cms.caltech.edu]
  • [authors.library.caltech.edu]
  • [www.cns.nyu.edu]
  • [users.cms.caltech.edu]
  • [users.cms.caltech.edu]
  • [users.cms.caltech.edu]
  • [www.math.princeton.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Joel A. Tropp
Citations:911 - 9 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Tropp04greedis,
    author = {Joel A. Tropp},
    title = {Greed is Good: Algorithmic Results for Sparse Approximation},
    year = {2004}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasi-incoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasi-incoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms.

Keyphrases

sparse approximation    algorithmic result    quasi-incoherent dictionary    sufficient condition    sparse problem    greedy algorithm    optimal approximation    basis pursuit    minimal error    cumulative coherence function    sparse approximation problem    approximation algorithm    sparse approximant    new result    optimal representation    nonsparse signal    wide class    orthogonal matching pursuit    redundant dictionary    recent result    small factor    incoherent dictionary    input signal    natural generalization    sparse signal   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University