@MISC{Marchi00anabstract, author = {F. De Marchi and E. P. Robinson and G. Rosolini}, title = {An Abstract Look At Realizability}, year = {2000} }

Share

OpenURL

Abstract

This paper is about purely categorical approaches to realizability, and contrasts with recent work particularly by Longley [14] and Lietz and Streicher [13], in which the basis is taken as a typed generalisation of a partial combinatory algebra. We, like they, will be interested in when the construction yields a topos, and hence gives a full interpretation of higher-order logic. This is also a theme of Birkedal's work, see [1, 2], and his joint work in [3]. Birkedal makes considerable use of the construction we study. We present realizability toposes as the product of two constructions. First one takes a category (which corresponds to the typed partial combinatory algebra), and then one glues Set to it in a variant of the comma construction. This, as we shall see, has the eect of improving the categorical properties of the algebra category. Then one takes an exact completion of the result. This also has the eect of improving the categorical properties. Formally the main result of the paper is that the result is a topos just (modulo some technical conditions) when the original category has a universal object. Early work on realizability (e.g.[12, 22], or see [23]) is characterised by its largely syntactic nature. The core denition is when a sentence of some formal logic is realised, and the main interest is in when certain deductive principles (such as Markov's rule) are validated. Martin Hyland's invention y The authors wish to acknowledge the support of the EPSRC, EU Working Group 26142 APPSEM, and MURST 1 2 of realizability toposes [10] advances on this, not only in the simplicity of the construction, but by providing a semantic framework in which the formal logics can naturally be interpreted. Hyland was strongly motivated in his work by a then recent approach...