• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Vigilante: End-to-End Containment of Internet Worm Epidemics (2008)

Cached

  • Download as a PDF

Download Links

  • [research.microsoft.com]
  • [research.microsoft.com]
  • [wiki.ittc.ku.edu]
  • [research.microsoft.com]
  • [www.cs.cornell.edu]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [www.cs.princeton.edu]
  • [cs.ucsb.edu]
  • [www.research.microsoft.com]
  • [www.cs.duke.edu]
  • [www.cs.cornell.edu]
  • [www.eecs.harvard.edu]
  • [research.microsoft.com]
  • [www.cs.duke.edu]
  • [research.microsoft.com]
  • [cs.uwaterloo.ca]
  • [www.cs.duke.edu]
  • [www.cs.utexas.edu]
  • [research.cs.wisc.edu]
  • [www.lasr.cs.ucla.edu]
  • [www.cs.utah.edu]
  • [www.csd.uoc.gr]
  • [www.cs.princeton.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.cornell.edu]
  • [www.cs.ucsb.edu]
  • [www.cs.utexas.edu]
  • [www.csd.uoc.gr]
  • [cs.ucsb.edu]
  • [www.cs.ucsb.edu]
  • [www.cs.ucsb.edu]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [www.eecs.harvard.edu]
  • [cs.ucsb.edu]
  • [cs.ucsb.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.csd.uoc.gr]
  • [cs.uwaterloo.ca]
  • [www.csd.uoc.gr]
  • [www.cs.utah.edu]
  • [www.research.microsoft.com]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Manuel Costa , Jon Crowcroft , Miguel Castro , Antony Rowstron , Lidong Zhou , Lintao Zhang , Paul Barham
Citations:304 - 6 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Costa08vigilante:end-to-end,
    author = {Manuel Costa and Jon Crowcroft and Miguel Castro and Antony Rowstron and Lidong Zhou and Lintao Zhang and Paul Barham},
    title = { Vigilante: End-to-End Containment of Internet Worm Epidemics},
    year = {2008}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically that addresses these limitations. In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that can detect unknown worms by tracking the flow of data from network messages and disallowing unsafe uses of this data. We also show how to integrate other host-based detection mechanisms into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead

Keyphrases

internet worm epidemic    end-to-end containment    worm containment    vulnerable program    dynamic analysis    network level    network-level technique    vulnerable host    recent work    infection attempt    unknown worm    vulnerability condition slicing    self-certifying alert    dynamic data-flow analysis    host-based detection mechanism    unsafe us    network message    control-flow condition    new type    overlay network    broad-coverage host-based algorithm    sca protect    vigilante architecture    new end-to-end architecture    security alert   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University