• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms (2002)

Cached

  • Download as a PDF

Download Links

  • [www.research.att.com]
  • [wing.comp.nus.edu.sg]
  • [ucrel.lancs.ac.uk]
  • [www.aclweb.org]
  • [www.aclweb.org]
  • [aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [www.ai.mit.edu]
  • [people.csail.mit.edu]
  • [www.csail.mit.edu]
  • [www.cslu.ogi.edu]
  • [www.cs.columbia.edu]
  • [www.cs.columbia.edu]
  • [www.cslu.ogi.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Michael Collins
Citations:660 - 13 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Collins02discriminativetraining,
    author = {Michael Collins},
    title = {Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms},
    booktitle = {},
    year = {2002},
    pages = {1--8}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We describe new algorithms for training tagging models, as an alternative to maximum-entropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a modification of the proof of convergence of the perceptron algorithm for classification problems. We give experimental results on part-of-speech tagging and base noun phrase chunking, in both cases showing improvements over results for a maximum-entropy tagger.

Keyphrases

perceptron algorithm    discriminative training method    hidden markov model    base noun phrase chunking    part-of-speech tagging    classification problem    conditional random field    maximum-entropy model    viterbi decoding    new algorithm    simple additive update    experimental result    training example    maximum-entropy tagger   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University