• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Automatic Retrieval and Clustering of Similar Words (1998)

Cached

  • Download as a PDF

Download Links

  • [acl.ldc.upenn.edu]
  • [www.aclweb.org]
  • [www.aclweb.org]
  • [ucrel.lancs.ac.uk]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [acl.eldoc.ub.rug.nl]
  • [aclweb.org]
  • [nlp.cs.swarthmore.edu]
  • [wing.comp.nus.edu.sg]
  • [acl.ldc.upenn.edu]
  • [aclweb.org]
  • [ucrel.lancs.ac.uk]
  • [www.umiacs.umd.edu]
  • [ftp.cs.umanitoba.ca]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Dekang Lin
Citations:943 - 15 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Lin98automaticretrieval,
    author = {Dekang Lin},
    title = {Automatic Retrieval and Clustering of Similar Words},
    year = {1998}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

greatest challenges in natural language learning. We first define a word similarity measure based on the distributional pattern of words. The similarity measure allows us to construct a thesaurus using a parsed corpus. We then present a new evaluation methodology for the automatically constructed the- saurus. The evaluation results show that the the- saurus is significantly closer to WordNet than Roget Thesaurus is.

Keyphrases

automatic retrieval    similar word    word similarity measure    similarity measure    distributional pattern    parsed corpus    evaluation result    roget thesaurus    new evaluation methodology    natural language learning   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University