• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Learning the Kernel Matrix with Semi-Definite Programming (2002)

Cached

  • Download as a PDF

Download Links

  • [www.support-vector.net]
  • [ima.umn.edu]
  • [silver.ima.umn.edu]
  • [redesign.ima.umn.edu]
  • [www.ima.umn.edu]
  • [robotics.eecs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.support-vector.net]
  • [people.csail.mit.edu]
  • [www.ai.mit.edu]
  • [www.cs.columbia.edu]
  • [www.ics.uci.edu]
  • [www.csail.mit.edu]
  • [www1.cs.columbia.edu]
  • [www.eecs.berkeley.edu]
  • [www0.cs.ucl.ac.uk]
  • [www.eecs.berkeley.edu]
  • [www1.cs.columbia.edu]
  • [cosmal.ucsd.edu]
  • [cosmal.ucsd.edu]
  • [cosmal.ucsd.edu]
  • [cosmal.ucsd.edu]
  • [www0.cs.ucl.ac.uk]
  • [www.eecs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [cosmal.ucsd.edu]
  • [www.cs.berkeley.edu]
  • [cosmal.ucsd.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.jmlr.org]
  • [jmlr.csail.mit.edu]
  • [jmlr.org]
  • [www.ai.mit.edu]
  • [videoprocessing.ucsd.edu]
  • [cbio.ensmp.fr]
  • [iweb.tntech.edu]
  • [www.jmlr.org]
  • [www.cs.berkeley.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Gert R. G. Lanckriet , Nello Cristianini , Laurent El Ghaoui , Peter Bartlett , Michael I. Jordan
Citations:775 - 21 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Lanckriet02learningthe,
    author = {Gert R. G. Lanckriet and Nello Cristianini and Laurent El Ghaoui and Peter Bartlett and Michael I. Jordan},
    title = {Learning the Kernel Matrix with Semi-Definite Programming },
    year = {2002}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space---classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied

Keyphrases

kernel matrix    data point    algorithm work    linear relation    machine learning    inner product    embedding space    relative position    so-called kernel matrix    semi-definite programming    positive definite matrix    euclidean space   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University