• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

The structure and function of complex networks (2003)

Cached

  • Download as a PDF

Download Links

  • [www.cs.berkeley.edu]
  • [storm.cis.fordham.edu]
  • [storm.cis.fordham.edu]
  • [www.eecs.berkeley.edu]
  • [storm.cis.fordham.edu]
  • [storm.cis.fordham.edu]
  • [www.cs.rice.edu]
  • [www.cs.rice.edu]
  • [www.cs.rice.edu]
  • [www.cs.rice.edu]
  • [www-personal.umich.edu]
  • [www.cc.gatech.edu]
  • [www-static.cc.gatech.edu]
  • [www.cc.gatech.edu]
  • [www.cc.gatech.edu]
  • [www-personal.umich.edu]
  • [sites.uclouvain.be]
  • [www.cs.princeton.edu]
  • [www.cs.princeton.edu]
  • [arxiv.org]
  • [www.stat.duke.edu]
  • [arxiv.org]
  • [www.perada.eu]
  • [oz.stern.nyu.edu]
  • [merlin.fae.ua.es]
  • [www.facweb.iitkgp.ernet.in]
  • [cs.wellesley.edu]
  • [stat.gamma.rug.nl]
  • [www.cin.ufpe.br]
  • [tuvalu.santafe.edu]
  • [www.ic.unicamp.br]
  • [psych.colorado.edu]
  • [www-personal.umich.edu]
  • [wiki.cs.unm.edu]
  • [users.cms.caltech.edu]
  • [didawiki.cli.di.unipi.it]
  • [www-personal.umich.edu]
  • [mae.ucdavis.edu]
  • [mae.engr.ucdavis.edu]
  • [www.ruf.rice.edu]
  • [epubs.siam.org]
  • [www.ic.unicamp.br]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by M. E. J. Newman
Venue:SIAM REVIEW
Citations:2594 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Newman03thestructure,
    author = {M. E. J. Newman},
    title = {The structure and function of complex networks},
    journal = {SIAM REVIEW},
    year = {2003},
    volume = {45},
    pages = {167--256}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

Keyphrases

complex network    small-world effect    degree distribution    dynamical process    recent year    network growth    social network    biological network    networked system    empirical study    preferential attachment    random graph model    network correlation   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University