• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images (2001)

Cached

  • Download as a PDF

Download Links

  • [www.csee.wvu.edu]
  • [www.csd.uwo.ca]
  • [www.vuse.vanderbilt.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.csd.uwo.ca]
  • [www.cse.psu.edu]
  • [www.tecgraf.puc-rio.br]
  • [www.math.zju.edu.cn]
  • [pages.cs.wisc.edu]
  • [pdf.aminer.org]
  • [www.math.zju.edu.cn]
  • [www.cs.cmu.edu]
  • [www.csd.uwo.ca]
  • [pages.cs.wisc.edu]
  • [www.tecgraf.puc-rio.br]
  • [www.cse.psu.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Yuri Y. Boykov , Marie-Pierre Jolly
Citations:1009 - 20 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Boykov01interactivegraph,
    author = {Yuri Y. Boykov and Marie-Pierre Jolly},
    title = {Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images},
    year = {2001}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both “object” and “background” segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm in [2].

Keyphrases

interactive graph cut    optimal boundary region segmentation    n-d image    n-dimensional image    optimal segmentation    region property    fast implementation    graph cut    new mar ow algorithm    new technique    interesting gestalt example    hard constraint    general purpose interactive segmentation    additional soft constraint    medical image seg-mentation    region information    certain pixel    sev-eral isolatedparts    segmentation method    background segment    experimental result    context ofphotohideo    obtained solution   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University