• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Learning to detect natural image boundaries using local brightness, color, and texture cues (2004)

Cached

  • Download as a PDF

Download Links

  • [statistic.gunadarma.ac.id]
  • [www.cs.sfu.ca]
  • [www.cs.berkeley.edu]
  • [www.cs.sfu.ca]
  • [www.cs.sfu.ca]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [vision.bc.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.virginia.edu]
  • [www.cs.princeton.edu:80]
  • [www.cs.princeton.edu:80]
  • [www.cs.princeton.edu:80]
  • [www.cs.princeton.edu]
  • [www.cs.princeton.edu]
  • [www.cs.princeton.edu]
  • [www.cs.princeton.edu]
  • [www.cs.virginia.edu]
  • [www.cs.virginia.edu]
  • [www.cs.virginia.edu]
  • [www.cs.virginia.edu]
  • [www.cs.berkeley.edu]
  • [www.ics.uci.edu]
  • [www.cs.unr.edu]
  • [www.cs.berkeley.edu]
  • [www.cse.unr.edu]
  • [www.ics.uci.edu]
  • [www.cse.unr.edu]
  • [vision.ics.uci.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [books.nips.cc]
  • [www.cs.berkeley.edu]
  • [www.ics.uci.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.ics.uci.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by David R. Martin , Charless C. Fowlkes , Jitendra Malik
Venue:PAMI
Citations:625 - 18 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Martin04learningto,
    author = {David R. Martin and Charless C. Fowlkes and Jitendra Malik},
    title = {Learning to detect natural image boundaries using local brightness, color, and texture cues},
    journal = {PAMI},
    year = {2004},
    volume = {26},
    pages = {530--549}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images.

Keyphrases

natural image boundary    texture cue    local brightness    natural image    boundary localization    present precision-recall curve    ground truth    boundary detection    optimal way    cue combination    characteristic change    local image measurement    image location    main result    simple linear model    ground truth segmentation data set    explicit treatment    posterior probability    index term texture    natural scene    natural boundary   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University