• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

SPEA2: Improving the Strength Pareto Evolutionary Algorithm (2001)

Cached

  • Download as a PDF

Download Links

  • [www.tik.ee.ethz.ch]
  • [www-course.cs.york.ac.uk]
  • [www-course.cs.york.ac.uk]
  • [ringil.cis.ksu.edu]
  • [www.kddresearch.org]
  • [www.kdd.cis.ksu.edu]
  • [www.kddresearch.org]
  • [ringil.cis.ksu.edu]
  • [www.kddresearch.org]
  • [e-collection.library.ethz.ch]
  • [www.kddresearch.org]
  • [www.tik.ee.ethz.ch]
  • [ftp.tik.ee.ethz.ch]
  • [ftp.tik.ee.ethz.ch]
  • [ftp.tik.ee.ethz.ch]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Eckart Zitzler , Marco Laumanns , Lothar Thiele
Citations:707 - 19 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@TECHREPORT{Zitzler01spea2:improving,
    author = {Eckart Zitzler and Marco Laumanns and Lothar Thiele},
    title = {SPEA2: Improving the Strength Pareto Evolutionary Algorithm},
    institution = {},
    year = {2001}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Pareto-optimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very good performance in comparison to other multiobjective evolutionary algorithms, and therefore it has been a point of reference in various recent investigations, e.g., (Corne, Knowles, and Oates 2000). Furthermore, it has been used in different applications, e.g., (Lahanas, Milickovic, Baltas, and Zamboglou 2001). In this paper, an improved version, namely SPEA2, is proposed, which incorporates in contrast to its predecessor a fine-grained fitness assignment strategy, a density estimation technique, and an enhanced archive truncation method. The comparison of SPEA2 with SPEA and two other modern elitist methods, PESA and NSGA-II, on different test problems yields promising results.

Keyphrases

strength pareto evolutionary algorithm    improved version    good performance    pareto-optimal set    density estimation technique    different application    modern elitist method    enhanced archive truncation method    multiobjective optimization problem    recent technique    different test problem yield    multiobjective evolutionary algorithm    various recent investigation    different study    fine-grained fitness assignment strategy   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University