• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Robust Real-time Object Detection (2001)

Cached

  • Download as a PDF

Download Links

  • [www.wisdom.weizmann.ac.il]
  • [www.wisdom.weizmann.ac.il]
  • [www.iro.umontreal.ca]
  • [www.iro.umontreal.ca]
  • [www.hpl.hp.com]
  • [www.ai.mit.edu]
  • [www.merl.com]
  • [web.cs.swarthmore.edu]
  • [dtpapers.googlecode.com]
  • [staff.fnwi.uva.nl]
  • [webdocs.cs.ualberta.ca]
  • [www.cs.swarthmore.edu]
  • [dtpapers.googlecode.com]
  • [webdocs.cs.ualberta.ca]
  • [bitsavers.trailing-edge.com]
  • [www.cs.swarthmore.edu]
  • [zoo.cs.yale.edu]
  • [research.microsoft.com]
  • [www.research.microsoft.com]
  • [research.microsoft.com]
  • [www.cs.sfu.ca]
  • [www.cs.sfu.ca]
  • [research.microsoft.com]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.liralab.it]
  • [www2.it.lut.fi]
  • [www.swarthmore.edu]
  • [www.micc.unifi.it]
  • [www0.cs.ucl.ac.uk]
  • [dircweb.king.ac.uk]
  • [www2.informatik.uni-halle.de]
  • [robots.stanford.edu]
  • [www.cs.cmu.edu]

  • Other Repositories/Bibliography

  • CiteULike
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Paul Viola , Michael Jones
Venue:International Journal of Computer Vision
Citations:1184 - 4 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Viola01robustreal-time,
    author = {Paul Viola and Michael Jones},
    title = {Robust Real-time Object Detection},
    booktitle = {International Journal of Computer Vision},
    year = {2001}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a method for combining classifiers in a “cascade ” which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. A set of experiments in the domain of face detection are presented. The system yields face detection performace comparable to the best previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15 frames per second. 1.

Keyphrases

robust real-time object detection    background region    detection performace    efficient classifier    integral image    high detection rate    face detection    visual object detection framework    learning algorithm    object-like region    new image representation    third contribution    previous system    system yield    critical visual feature    face detection proceeds    small number    key contribution    conventional desktop   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University