• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Congestion control for high bandwidth-delay product networks (2002)

Cached

  • Download as a PDF

Download Links

  • [www.sigcomm.org]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [cs.ucsb.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.acm.org]
  • [www.cs.toronto.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.toronto.edu]
  • [www.cs.umd.edu]
  • [www.news.cs.nyu.edu]
  • [www.cs.cornell.edu]
  • [www.cs.cmu.edu]
  • [www.cs.ucsb.edu]
  • [www.cs.ucsb.edu]
  • [www.cs.cmu.edu]
  • [www.ccs.neu.edu]
  • [www.cc.gatech.edu]
  • [www.cs.ucsb.edu]
  • [www.cs.umd.edu]
  • [www.cs.ust.hk]
  • [www-users.cselabs.umn.edu]
  • [www.news.cs.nyu.edu]
  • [sharif.edu]
  • [www.cs.cmu.edu]
  • [web.univ-pau.fr]
  • [www.cs.cmu.edu]
  • [www.cs.ust.hk]
  • [cs.baylor.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.illinois.edu]
  • [www.arl.wustl.edu]
  • [www1.arl.wustl.edu]
  • [cs.ecs.baylor.edu]
  • [www.cs.duke.edu]
  • [web.engr.illinois.edu]
  • [www.arl.wustl.edu]
  • [www.arl.wustl.edu]
  • [www1.arl.wustl.edu]
  • [www.cs.duke.edu]
  • [pbg.cs.illinois.edu]
  • [www.arl.wustl.edu]
  • [www.cs.illinois.edu]
  • [www1.arl.wustl.edu]
  • [cs.ecs.baylor.edu]
  • [www.cs.cuhk.hk]
  • [www.cse.cuhk.edu.hk]
  • [www.cs.cuhk.edu.hk]
  • [www.cse.cuhk.edu.hk]
  • [www.cs.cuhk.edu.hk]
  • [www.cs.colostate.edu]
  • [www.cs.colostate.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Dina Katabi , Mark Handley , Charlie Rohrs
Venue:SIGCOMM '02
Citations:447 - 4 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Katabi02congestioncontrol,
    author = {Dina Katabi and Mark Handley and Charlie Rohrs},
    title = {Congestion control for high bandwidth-delay product networks},
    booktitle = {SIGCOMM '02},
    year = {2002},
    pages = {89--102},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Theory and experiments show that as the per-flow product of bandwidth and latency increases, TCP becomes inefficient and prone to instability, regardless of the queuing scheme. This failing becomes increasingly important as the Internet evolves to incorporate very high-bandwidth optical links and more large-delay satellite links. To address this problem, we develop a novel approach to Internet congestion control that outperforms TCP in conventional environments, and remains efficient, fair, scalable, and stable as the bandwidth-delay product increases. This new eXplicit Control Protocol, XCP, generalizes the Explicit Congestion Notification proposal (ECN). In addition, XCP introduces the new concept of decoupling utilization control from fairness control. This allows a more flexible and analytically tractable protocol design and opens new avenues for service differentiation. Using a control theory framework, we model XCP and demonstrate it is stable and efficient regardless of the link capacity, the round trip delay, and the number of sources. Extensive packet-level simulations show that XCP outperforms TCP in both conventional and high bandwidth-delay environments. Further, XCP achieves fair bandwidth allocation, high utilization, small standing queue size, and near-zero packet drops, with both steady and highly varying traffic. Additionally, the new protocol does not maintain any per-flow state in routers and requires few CPU cycles per packet, which makes it implementable in high-speed routers.

Keyphrases

congestion control    high bandwidth-delay product network    conventional environment    round trip delay    xcp outperforms tcp    near-zero packet drop    bandwidth-delay product increase    link capacity    novel approach    tractable protocol design    fairness control    cpu cycle    latency increase    explicit congestion notification proposal    high-bandwidth optical link    extensive packet-level simulation    new avenue    service differentiation    control theory framework    high bandwidth-delay environment    efficient regardless    utilization control    large-delay satellite link    new explicit control protocol    per-flow state    high-speed router    new concept    fair bandwidth allocation    per-flow product    high utilization    new protocol    queue size    internet congestion control   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University