• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

A Maximum Entropy approach to Natural Language Processing (1996)

Cached

  • Download as a PDF

Download Links

  • [research.nii.ac.jp]
  • [l2r.cs.uiuc.edu]
  • [www-rohan.sdsu.edu]
  • [l2r.cs.uiuc.edu]
  • [l2r.cs.uiuc.edu]
  • [www-rohan.sdsu.edu]
  • [acl.ldc.upenn.edu]
  • [www.cse.msu.edu]
  • [faculty.cs.byu.edu]
  • [acl.ldc.upenn.edu]
  • [nlp.cs.swarthmore.edu]
  • [www.aclweb.org]
  • [www.aclweb.org]
  • [courses.csail.mit.edu]
  • [www.cs.columbia.edu]
  • [www.ai.mit.edu]
  • [newdesign.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [aclweb.org]
  • [isoft.postech.ac.kr]
  • [ucrel.lancs.ac.uk]
  • [faculty.washington.edu]
  • [nlp.postech.ac.kr]
  • [www.cs.columbia.edu]
  • [wing.comp.nus.edu.sg]
  • [nlp.cs.swarthmore.edu]
  • [www.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [www.cs.cmu.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Adam L. Berger , Stephen A. Della Pietra , Vincent J. Della Pietra
Venue:COMPUTATIONAL LINGUISTICS
Citations:1365 - 5 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Berger96amaximum,
    author = {Adam L. Berger and Stephen A. Della Pietra and Vincent J. Della Pietra},
    title = {A Maximum Entropy approach to Natural Language Processing},
    journal = {COMPUTATIONAL LINGUISTICS},
    year = {1996},
    volume = {22},
    pages = {39--71}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we describe a method for statistical modeling based on maximum entropy. We present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.

Keyphrases

natural language processing    maximum entropy approach    maximum entropy    multiple thread    pattern recognition    maximum entropy model    widescale application    statistical estimation    biblical time    statistical modeling    maximum-likelihood approach    example several problem    real world problem   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University