• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Nonlinear component analysis as a kernel eigenvalue problem (1996)

Cached

  • Download as a PDF

Download Links

  • [www.face-rec.org]
  • [www.eecs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [axon.cs.byu.edu]
  • [axon.cs.byu.edu]
  • [sse.tongji.edu.cn]
  • [www.cs.usu.edu]
  • [users.ecs.soton.ac.uk]
  • [luthuli.cs.uiuc.edu]
  • [luthuli.cs.uiuc.edu]
  • [www.kyb.tuebingen.mpg.de]
  • [mlg.anu.edu.au]
  • [alex.smola.org]
  • [www.first.gmd.de]
  • [www.kernel-machines.org]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Bernhard Schölkopf , Alexander Smola , Klaus-Robert Müller
Venue:
Citations:1572 - 83 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Schölkopf96nonlinearcomponent,
    author = {Bernhard Schölkopf and Alexander Smola and Klaus-Robert Müller},
    title = {Nonlinear component analysis as a kernel eigenvalue problem},
    year = {1996}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5-pixel products in 16x16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.

Keyphrases

kernel eigenvalue problem    nonlinear component analysis    possible 5-pixel product    pattern recognition    new method    nonlinear form    high-dimensional feature space    integral operator kernel function    nonlinear map    first experimental result    principal component    principal component analysis    kernel approach    nonlinear feature extraction   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University