• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction (2003)

Cached

  • Download as a PDF

Download Links

  • [www.jmlr.org]
  • [www.cs.utexas.edu]
  • [www.aaai.org]
  • [acl.ldc.upenn.edu]
  • [ucrel.lancs.ac.uk]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [www.dfki.de]
  • [lcg-www.uia.ac.be]
  • [ftp.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [ftp.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [ftp.cs.utexas.edu]
  • [ftp.cs.utexas.edu]
  • [www.aaai.org]
  • [www.aaai.org]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.jmlr.org]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utah.edu]

  • Other Repositories/Bibliography

  • CiteULike
  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Mary Elaine Califf , Raymond J. Mooney , David Cohn
Citations:406 - 20 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Califf03bottom-uprelational,
    author = {Mary Elaine Califf and Raymond J. Mooney and David Cohn},
    title = {Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction},
    booktitle = {},
    year = {2003},
    pages = {328--334}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Information extraction is a form of shallow text processing that locates a specified set of relevant items in a natural-language document. Systems for this task require significant domain-specific knowledge and are time-consuming and difficult to build by hand, making them a good application for machine learning. We present an algorithm, RAPIER, that uses pairs of sample documents and filled templates to induce pattern-match rules that directly extract fillers for the slots in the template. RAPIER is a bottom-up learning algorithm that incorporates techniques from several inductive logic programming systems. We have implemented the algorithm in a system that allows patterns to have constraints on the words, part-of-speech tags, and semantic classes present in the filler and the surrounding text. We present encouraging experimental results on two domains.

Keyphrases

information extraction    bottom-up relational learning    pattern matching rule    present encouraging experimental result    sample document    natural-language document    good application    bottom-up learning algorithm    shallow text processing    semantic class    significant domain-specific knowledge    specified set    pattern-match rule    machine learning    part-of-speech tag    relevant item   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University