• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Least-Squares Policy Iteration (2003)

Cached

  • Download as a PDF

Download Links

  • [www.jmlr.org]
  • [www.cse.wustl.edu]
  • [www.cs.duke.edu]
  • [www.cs.duke.edu]
  • [www2.isye.gatech.edu]
  • [www.jmlr.org]
  • [www.isye.gatech.edu]
  • [www.cs.duke.edu]
  • [jmlr.csail.mit.edu]
  • [www.cs.duke.edu]
  • [jmlr.org]
  • [www.cs.berkeley.edu]
  • [machinelearning.wustl.edu]
  • [homes.cs.washington.edu]
  • [homes.cs.washington.edu]
  • [www.cs.duke.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Michail G. Lagoudakis , Ronald Parr
Venue:JOURNAL OF MACHINE LEARNING RESEARCH
Citations:454 - 12 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Lagoudakis03least-squarespolicy,
    author = {Michail G. Lagoudakis and Ronald Parr},
    title = {Least-Squares Policy Iteration},
    journal = {JOURNAL OF MACHINE LEARNING RESEARCH},
    year = {2003},
    volume = {4},
    pages = {1107--1149}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach

Keyphrases

least-squares policy iteration    new approach    approximate policy iteration    value-function approximation    linear architecture    control problem   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University