• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Contour Detection and Hierarchical Image Segmentation (2010)

Cached

  • Download as a PDF

Download Links

  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.ics.uci.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.ics.uci.edu]
  • [www.cs.berkeley.edu]
  • [web.cs.hacettepe.edu.tr]
  • [vision.ics.uci.edu]
  • [www.cs.berkeley.edu]
  • [vision.caltech.edu]
  • [vision.caltech.edu]
  • [ttic.uchicago.edu]
  • [www.eecs.berkeley.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Pablo Arbeláez , Michael Maire , Charless Fowlkes , Jitendra Malik
Venue: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Citations:389 - 24 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Arbeláez10contourdetection,
    author = {Pablo Arbeláez and Michael Maire and Charless Fowlkes and Jitendra Malik},
    title = {Contour Detection and Hierarchical Image Segmentation},
    year = {2010}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by userspecified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

Keyphrases

contour detection    hierarchical image segmentation    image segmentation    spectral clustering    contour detector    hierarchical region tree    computer vision    multiple image resolution    recognition application    segmentation method    present state-of-the-art algorithm    fundamental problem    userspecified annotation    globalization framework    generic machinery    segmentation algorithm    extensive experimental evaluation    generated hierarchical segmentation   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University