@MISC{Agrawal_fullysecure, author = {Shweta Agrawal}, title = {Fully Secure Functional Encryption for Inner Products, from Standard Assumptions}, year = {} }
Share
OpenURL
Abstract
Abstract. Functional encryption is a modern public-key paradigm where a master secret key can be used to derive sub-keys SKF associated with certain functions F in such a way that the decryption operation reveals F (M), if M is the encrypted message, and nothing else. Recently, Abdalla et al. gave simple and efficient realizations of the primitive for the computation of linear functions on encrypted data: given an encryption of a vector y over some specified base ring, a secret key SKx for the vector x allows computing 〈x,y〉. Their technique surprisingly allows for instantiations under standard assumptions, like the hardness of the Decision Diffie-Hellman (DDH) and Learning-with-Errors (LWE) problems. Their constructions, however, are only proved secure against selective adversaries, which have to declare the challenge messages M0 and M1 at the outset of the game. In this paper, we provide constructions that provably achieve security against more realistic adaptive attacks (where the messages M0 and M1