• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

PCA-SIFT: A more distinctive representation for local image descriptors (2004)

Cached

  • Download as a PDF

Download Links

  • [www.intel-research.net]
  • [www.cs.cmu.edu]
  • [www.lb.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [www-cgi.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [nichol.as]
  • [nichol.as]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [leibniz.iimas.unam.mx]
  • [www.lb.cs.cmu.edu]
  • [www.cse.unr.edu]
  • [www.cs.cmu.edu]
  • [www.cse.unr.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Yan Ke , Rahul Sukthankar
Citations:591 - 6 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Ke04pca-sift:a,
    author = {Yan Ke and Rahul Sukthankar},
    title = {PCA-SIFT: A more distinctive representation for local image descriptors},
    booktitle = {},
    year = {2004},
    pages = {506--513},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply Principal Components Analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCAbased local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image retrieval application results in increased accuracy and faster matching.

Keyphrases

local image descriptor    distinctive representation    image deformation    increased accuracy    object recognition algorithm    fundamental component    image gradient    pcabased local descriptor    standard sift representation    salient aspect    weighted histogram    normalized gradient patch    image retrieval application result    principal component analysis    feature point    many image registration    faster matching    common image deformation    present result    stable local feature detection   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University