• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Non-linear Matrix Factorization with Gaussian Processes

Cached

  • Download as a PDF

Download Links

  • [www.cs.mcgill.ca]
  • [icml2009.org]
  • [www.ece.duke.edu]
  • [people.ee.duke.edu]
  • [people.ee.duke.edu]
  • [www.ttic.edu]
  • [ttic.uchicago.edu]
  • [people.csail.mit.edu]
  • [ttic.uchicago.edu]
  • [www1.icsi.berkeley.edu]
  • [www.cs.toronto.edu]
  • [www1.icsi.berkeley.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Neil D. Lawrence , Raquel Urtasun
Citations:74 - 1 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Lawrence_non-linearmatrix,
    author = {Neil D. Lawrence and Raquel Urtasun},
    title = {Non-linear Matrix Factorization with Gaussian Processes},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

A popular approach to collaborative filtering is matrix factorization. In this paper we develop a non-linear probabilistic matrix factorization using Gaussian process latent variable models. We use stochastic gradient descent (SGD) to optimize the model. SGD allows us to apply Gaussian processes to data sets with millions of observations without approximate methods. We apply our approach to benchmark movie recommender data sets. The results show better than previous state-of-theart performance. 1.

Keyphrases

gaussian process    non-linear matrix factorization    non-linear probabilistic matrix factorization    gaussian process latent variable model    approximate method    stochastic gradient descent    popular approach    matrix factorization    previous state-of-theart performance    data set    movie recommender data set   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University