• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

An Efficient Boosting Algorithm for Combining Preferences (1999)

Cached

  • Download as a PDF

Download Links

  • [www.lcs.mit.edu]
  • [www.lcs.mit.edu]
  • [publications.csail.mit.edu]
  • [bitsavers.informatik.uni-stuttgart.de]
  • [dnkweb.denken.or.jp]
  • [www.cs.huji.ac.il]
  • [theory.lcs.mit.edu]
  • [theory.lcs.mit.edu]
  • [theory.lcs.mit.edu]
  • [www.jmlr.org]
  • [www-connex.lip6.fr]
  • [www-poleia.lip6.fr]
  • [jmlr.csail.mit.edu]
  • [www-connex.lip6.fr]
  • [jmlr.csail.mit.edu]
  • [www.ai.mit.edu]
  • [cbio.ensmp.fr]
  • [www.jmlr.org]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Raj Dharmarajan Iyer , Jr.
Citations:726 - 18 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Iyer99anefficient,
    author = {Raj Dharmarajan Iyer and Jr.},
    title = {An Efficient Boosting Algorithm for Combining Preferences},
    year = {1999}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW search strategies, each of which is a query expansion for a given domain. For this task, we compare the performance of RankBoost to the individual search strategies. The second experiment is a collaborative-filtering task for making movie recommendations. Here, we present results comparing RankBoost to nearest-neighbor and regression algorithms.

Keyphrases

combining preference    efficient boosting algorithm    multiple preference    different search engine    second experiment    several application    efficient implementation    efficient algorithm    collaborative-filtering task    first experiment    regression algorithm    certain natural case    different www search strategy    movie recommendation    new boosting algorithm    individual search strategy    query expansion    formal framework    present result   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University