• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

ON A CLASSIC EXAMPLE IN THE NONNEGATIVE INVERSE EIGENVALUE PROBLEM (2008)

Cached

  • Download as a PDF

Download Links

  • [www.math.technion.ac.il]
  • [www.maths.tcd.ie]
  • [emis.library.cornell.edu]
  • [emis.maths.tcd.ie]
  • [www.maths.soton.ac.uk]
  • [emis.muni.cz]
  • [emis.matem.unam.mx]
  • [emis.u-strasbg.fr]
  • [emis.mi.ras.ru]
  • [www.cirm.univ-mrs.fr]
  • [siba-sinmemis.unile.it]
  • [www.kurims.kyoto-u.ac.jp]
  • [www.mat.ub.edu]
  • [emis.dsd.sztaki.hu]
  • [www.univie.ac.at]
  • [ftp.gwdg.de]
  • [emis.math.tifr.res.in]
  • [hermite.cii.fc.ul.pt]
  • [emis.maths.adelaide.edu.au]
  • [www.math.ethz.ch]
  • [www.emis.ams.org]
  • [www.emis.de]
  • [ftp.gwdg.de]
  • [celc.cii.fc.ul.pt]
  • [emis.icm.edu.pl]
  • [www.mat.ub.es]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Thomas J. Laffey , Helena Smigoc
Citations:2 - 2 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Laffey08ona,
    author = {Thomas J. Laffey and Helena Smigoc},
    title = {ON A CLASSIC EXAMPLE IN THE NONNEGATIVE INVERSE EIGENVALUE PROBLEM },
    year = {2008}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper presents a construction of nonnegative matrices with nonzero spectrum τ =(3+t, 3 − t, −2, −2, −2) for t>0. The result presented gives a constructive proof of a result of Boyle and Handelman in this special case. This example exhibits a surprisingly fast convergence of the spectral gap of τ to zero as a function of the number of zeros that are added to the spectrum.

Keyphrases

nonzero spectrum    constructive proof    fast convergence    spectral gap    special case    nonnegative matrix   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University