• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Expander Flows, Geometric Embeddings and Graph Partitioning (2004)

Cached

  • Download as a PDF

Download Links

  • [www.cs.princeton.edu]
  • [www.cs.columbia.edu]
  • [www.cs.ust.hk]
  • [www.cs.princeton.edu]
  • [www.cs.ust.hk]
  • [www.cs.berkeley.edu]
  • [www.cs.princeton.edu]
  • [www.cc.gatech.edu]
  • [www.cs.princeton.edu]
  • [www.cc.gatech.edu]
  • [www.cc.gatech.edu]
  • [www.cs.princeton.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.princeton.edu]
  • [www.cs.princeton.edu]
  • [www.cs.princeton.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Sanjeev Arora , Satish Rao , Umesh Vazirani
Venue:IN 36TH ANNUAL SYMPOSIUM ON THE THEORY OF COMPUTING
Citations:312 - 18 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Arora04expanderflows,,
    author = {Sanjeev Arora and Satish Rao and Umesh Vazirani},
    title = {Expander Flows, Geometric Embeddings and Graph Partitioning},
    booktitle = {IN 36TH ANNUAL SYMPOSIUM ON THE THEORY OF COMPUTING},
    year = {2004},
    pages = {222--231},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We give a O( log n)-approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in , whose proof makes essential use of a phenomenon called measure concentration.

Keyphrases

graph partitioning    expander flow    geometric embeddings    measure concentration    triangle inequality constraint    sparsest cut    well-known semidefinite relaxation    essential use    approximation algorithm    point set    graph conductance problem    geometric theorem   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University