• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Latent dirichlet allocation (2003)

Cached

  • Download as a PDF

Download Links

  • [www.cs.colorado.edu]
  • [www.cs.colorado.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.berkeley.edu]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [www.stat.duke.edu]
  • [www.cs.berkeley.edu]
  • [www.jmlr.org]
  • [www.cs.princeton.edu]
  • [jmlr.csail.mit.edu]
  • [faculty.cs.byu.edu]
  • [www.inf.ed.ac.uk]
  • [www.cs.ucsd.edu]
  • [www.cs.princeton.edu:80]
  • [www.ai.mit.edu]
  • [www.cs.utah.edu]
  • [www.cs.utah.edu]
  • [cseweb.ucsd.edu]
  • [www.seas.harvard.edu]
  • [www.ai.mit.edu]
  • [engr.case.edu]
  • [jmlr.org]
  • [www.cs.princeton.edu]
  • [machinelearning.wustl.edu]
  • [www.lri.fr]
  • [www.terpconnect.umd.edu]
  • [cseweb.ucsd.edu]
  • [www.cs.cmu.edu]
  • [www.cs.berkeley.edu]
  • [www.robotics.stanford.edu]
  • [ai.stanford.edu]
  • [www.cs.stanford.edu]
  • [ai.stanford.edu]
  • [www.robotics.stanford.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by David M. Blei , Andrew Y. Ng , Michael I. Jordan , John Lafferty
Venue:Journal of Machine Learning Research
Citations:4358 - 92 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Blei03latentdirichlet,
    author = {David M. Blei and Andrew Y. Ng and Michael I. Jordan and John Lafferty},
    title = {Latent dirichlet allocation},
    journal = {Journal of Machine Learning Research},
    year = {2003},
    volume = {3},
    pages = {2003}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model. 1.

Keyphrases

latent dirichlet allocation    underlying set    topic probability    empirical bayes parameter estimation    explicit representation    collaborative filtering    em algorithm    generative probabilistic model    infinite mixture    text corpus    document modeling    unigrams model    three-level hierarchical bayesian model    discrete data    probabilistic lsi model    text classification    variational method    finite mixture    present efficient approximate inference technique    text modeling   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University