• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Matrix Scaling by Network Flow (2007)

Cached

  • Download as a PDF

Download Links

  • [www.inf.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [page.mi.fu-berlin.de]
  • [page.inf.fu-berlin.de]
  • [page.mi.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [page.inf.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [page.inf.fu-berlin.de]
  • [page.inf.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [page.mi.fu-berlin.de]
  • [www.inf.fu-berlin.de]
  • [page.mi.fu-berlin.de]
  • [page.inf.fu-berlin.de]
  • [www.inf.fu-berlin.de]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Günter Rote , Martin Zachariasen
Venue:IN PROCEEDINGS OF THE ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
Citations:7 - 1 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Rote07matrixscaling,
    author = {Günter Rote and Martin Zachariasen},
    title = {Matrix Scaling by Network Flow},
    booktitle = {IN PROCEEDINGS OF THE ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS},
    year = {2007},
    pages = {848--854},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

A given nonnegative n × n matrix A =(aij) is to be scaled, by multiplying its rows and columns by unknown positive multipliers λi and µj, such that the resulting matrix (aijλiµj) has specified row and column sums ri and sj. We give an algorithm that achieves the desired row and column sums with a maximum absolute error ε in O(n4 (log n +logh ε)) steps, where h is the overall total of the result matrix. Our algorithm is a scaling algorithm. It solves a sequence of more and more refined discretizations. The discretizations are minimum-cost network flow problems with convex piecewise linear costs. These discretizations are interesting in their own right because they arise in proportional elections.

Keyphrases

matrix scaling    network flow    desired row    network flow problem    column sum ri    convex piecewise linear cost    column sum    proportional election    refined discretizations    unknown positive multiplier    maximum absolute error    overall total    result matrix    scaling algorithm   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University