@MISC{Salmonella_researchtandem, author = {Surveillance Of Human Salmonella}, title = {RESEARCH Tandem Repeat Analysis for}, year = {} }
Share
OpenURL
Abstract
surveillance system of human enteric infections, all Salmonella enterica serotype Typhimurium isolates are currently subtyped by using phage typing, antimicrobial resistance profiles, and pulsed-field gel electrophoresis (PFGE). We evaluated the value of real-time typing that uses multiple-locus variable-number tandem-repeats analysis (MLVA) of S. Typhimurium to detect possible outbreaks. Because only a few subtypes identified by PFGE and phage typing account for most infections, we included MLVA typing in the routine surveillance in a 2-year period beginning December 2003. The 1,019 typed isolates were separated into 148 PFGE types and 373 MLVA types. Several possible outbreaks were detected and confirmed. MLVA was particularly valuable for discriminating within the most common phage types. MLVA was superior to PFGE for both surveillance and outbreak investigations of S. Typhimurium. Members of the bacterial genus Salmonella are among the major pathogens that cause infections in humans and animals. Most human Salmonella infections are thought to be associated with foodborne transmission from contaminated animal–derived meat and dairy products (1). Salmonella enterica subspecies enterica serotype Typhimurium is the second most commonly isolated serotype in Denmark (2) and in other industrialized countries (3). Typing is an important tool for surveillance and outbreak investigations of human infections. Many demands are placed on new typing methods, including high discriminatory power so that unrelated and related isolates can be identified (4). The method should be easy to perform and interpret, and it should be possible to standardize, so that