• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Airavat: Security and Privacy for MapReduce (2009)

Cached

  • Download as a PDF

Download Links

  • [www.cs.utexas.edu]
  • [userweb.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [z.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.utexas.edu]
  • [www.cs.cornell.edu]
  • [www.usenix.org]
  • [static.usenix.org]
  • [www.usenix.org]
  • [static.usenix.org]
  • [www.usenix.org]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Indrajit Roy , Hany E. Ramadan , Srinath T. V. Setty , Ann Kilzer , Vitaly Shmatikov , Emmett Witchel
Citations:82 - 2 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Roy09airavat:security,
    author = {Indrajit Roy and Hany E. Ramadan and Srinath T. V. Setty and Ann Kilzer and Vitaly Shmatikov and Emmett Witchel},
    title = { Airavat: Security and Privacy for MapReduce},
    year = {2009}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The cloud computing paradigm, which involves distributed computation on multiple large-scale datasets, will become successful only if it ensures privacy, confidentiality, and integrity for the data belonging to individuals and organizations. We present Airavat, a novel integration of decentralized information flow control (DIFC) and differential privacy that provides strong security and privacy guarantees for MapReduce computations. Airavat allows users to use arbitrary mappers, prevents unauthorized leakage of sensitive data during the computation, and supports automatic declassification of the results when the latter do not violate individual privacy. Airavat minimizes the amount of trusted code in the system and allows users without security expertise to perform privacy-preserving computations on sensitive data. Our prototype implementation demonstrates the flexibility of Airavat on a wide variety of case studies. The prototype is efficient, with run-times on Amazon’s cloud computing infrastructure within 25 % of a MapReduce system with no security.

Keyphrases

sensitive data    trusted code    arbitrary mapper    mapreduce computation    information flow control    security expertise    prototype implementation    case study    privacy-preserving computation    novel integration    privacy guarantee    individual privacy    differential privacy    data belonging    present airavat    strong security    mapreduce system    wide variety    amazon cloud    multiple large-scale datasets    automatic declassification    prevents unauthorized leakage   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University