• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Consistency of spectral clustering (2004)

Cached

  • Download as a PDF

Download Links

  • [www.kyb.mpg.de]
  • [www.cse.ohio-state.edu]
  • [www.iipl.fudan.edu.cn]
  • [www.kyb.tuebingen.mpg.de]
  • [www.kyb.mpg.de]
  • [web.cse.ohio-state.edu]
  • [www.kyb.mpg.de]
  • [books.nips.cc]
  • [people.kyb.tuebingen.mpg.de]
  • [www.cse.ohio-state.edu]
  • [arxiv.org]
  • [arxiv.org]
  • [web.cse.ohio-state.edu]
  • [www.kyb.tuebingen.mpg.de]
  • [www.kyb.mpg.de]
  • [www.kyb.mpg.de]
  • [www.kyb.tuebingen.mpg.de]
  • [www.math.ucf.edu]
  • [engr.case.edu]
  • [www.kyb.tuebingen.mpg.de]
  • [www.kyb.mpg.de]
  • [www.terpconnect.umd.edu]
  • [pantherfile.uwm.edu]
  • [www.kyb.tuebingen.mpg.de]
  • [www.kyb.mpg.de]
  • [www.vision.jhu.edu]
  • [www.kyb.mpg.de]
  • [www.kyb.tuebingen.mpg.de]
  • [people.kyb.tuebingen.mpg.de]
  • [www.kyb.tuebingen.mpg.de]
  • [www.kyb.mpg.de]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [cs.nyu.edu]
  • [www.cs.columbia.edu]
  • [www.cs.columbia.edu]
  • [arxiv.org]
  • [www.cis.rit.edu]
  • [www.cis.rit.edu]
  • [www.cis.rit.edu]
  • [arxiv.org]
  • [www.cse.ohio-state.edu]
  • [sse.tongji.edu.cn]
  • [www.kyb.mpg.de]
  • [www.kyb.tuebingen.mpg.de]
  • [web.mit.edu]
  • [www.math.uwaterloo.ca]
  • [www.stat.berkeley.edu]
  • [www.mit.edu]
  • [web.mit.edu]
  • [www.math.uwaterloo.ca]
  • [www.csee.wvu.edu]
  • [www.math.uwaterloo.ca]
  • [www.kyb.mpg.de]
  • [www.kyb.tuebingen.mpg.de]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Ulrike von Luxburg , Mikhail Belkin , Olivier Bousquet
Citations:570 - 15 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Luxburg04consistencyof,
    author = {Ulrike von Luxburg and Mikhail Belkin and Olivier Bousquet},
    title = {Consistency of spectral clustering},
    booktitle = {},
    year = {2004},
    pages = {857--864},
    publisher = {MIT Press}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for future exploration of Laplacian-based methods in a statistical setting.

Keyphrases

spectral clustering    major class    strong additional assumption    popular family    practical application    statistical setting    real data    normalized clustering    normalized spectral clustering    strong evidence    graph laplacian matrix    general condition    future exploration    laplacian-based method    statistical algorithm    key property    underlying probability distribution   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University