• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals (1996)

Cached

  • Download as a PDF

Download Links

  • [cs.ubc.ca]
  • [www.cs.wisc.edu]
  • [www.cs.wisc.edu]
  • [www.cs.wisc.edu]
  • [www.cs.columbia.edu]
  • [pages.cs.wisc.edu]
  • [pages.cs.wisc.edu]
  • [www.cs.ubc.ca]
  • [www.facweb.iitkgp.ernet.in]
  • [www.cs.uiuc.edu]
  • [knight.cis.temple.edu]
  • [www.facweb.iitkgp.ernet.in]
  • [www.dabi.temple.edu]
  • [www.facweb.iitkgp.ernet.in]
  • [www.facweb.iitkgp.ernet.in]
  • [people.cs.ubc.ca]
  • [people.cs.aau.dk]
  • [paul.rutgers.edu]
  • [paul.rutgers.edu]
  • [pages.cs.wisc.edu]
  • [www.cs.fiu.edu]
  • [ftp.research.microsoft.com]
  • [research.microsoft.com]
  • [infolab.usc.edu]
  • [lambda.csail.mit.edu]
  • [idke.ruc.edu.cn]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Jim Gray , Adam Bosworth , Andrew Layman , Don Reichart , Hamid Pirahesh
Citations:860 - 11 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Gray96datacube:,
    author = {Jim Gray and Adam Bosworth and Andrew Layman and Don Reichart and Hamid Pirahesh},
    title = {Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals},
    booktitle = {},
    year = {1996},
    pages = {152--159}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Abstract. Data analysis applications typically aggregate data across many dimensions looking for anomalies or unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zero-dimensional or one-dimensional aggregates. Applications need the N-dimensional generalization of these operators. This paper defines that operator, called the data cube or simply cube. The cube operator generalizes the histogram, crosstabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The novelty is that cubes are relations. Consequently, the cube operator can be imbedded in more complex non-procedural data analysis programs. The cube operator treats each of the N aggregation attributes as a dimension of N-space. The aggregate of a particular set of attribute values is a point in this space. The set of points forms an N-dimensional cube. Super-aggregates are computed by aggregating the N-cube to lower dimensional spaces. This paper (1) explains the cube and roll-up operators, (2) shows how they fit in SQL, (3) explains how users can define new aggregate functions for cubes, and (4) discusses efficient techniques to compute the cube. Many of these features are being added to the SQL Standard.

Keyphrases

data cube    cube operator    relational aggregation operator    one-dimensional aggregate    attribute value    sql aggregate function    many dimension    n-dimensional generalization    unusual pattern    dimensional space    sql standard    data analysis application    report writer    sub-total construct    complex non-procedural data analysis program    group operator    n-dimensional cube    point form    particular set    roll-up operator    efficient technique    new aggregate function   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University