• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Bayesian Time Series Analysis

Cached

  • Download as a PDF

Download Links

  • [www2.warwick.ac.uk]
  • [www2.warwick.ac.uk]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Mark Steel
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Steel_bayesiantime,
    author = {Mark Steel},
    title = {Bayesian Time Series Analysis},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This article describes the use of Bayesian methods in the statistical analysis of time series. The use of Markov chain Monte Carlo methods has made even the more complex time series models amenable to Bayesian analysis. Models discussed in some detail are ARIMA models and their fractionally integrated counterparts, state-space models, Markov switching and mixture models, and models allowing for timevarying volatility. A final section reviews some recent approaches to nonparametric Bayesian modelling of time series. 1 Bayesian methods The importance of Bayesian methods in econometrics has increased rapidly over the last decade. This is, no doubt, fuelled by an increasing appreciation of the advantages that Bayesian inference entails. In particular, it provides us with a formal way to incorporate the prior information we often possess before seeing the data, it fits perfectly with sequential learning and decision making and it directly leads to exact small sample results. In addition, the Bayesian paradigm is particularly natural for prediction, taking into account all parameter or even model uncertainty. The predictive distribution is the sampling distribution where the parameters are integrated out with the posterior distribution and is exactly what we need for forecasting, often a key goal of time-series analysis. Usually, the choice of a particular econometric model is not prespecified by theory and many competing models can be entertained. Comparing models can be done formally in a Bayesian framework through so-called posterior odds, which is the product of the prior odds and the Bayes factor. The Bayes factor between any two models is the ratio of the likelihoods integrated out with the corresponding prior and summarizes how the data favour one model over another. Given a set of possible models, this immediately leads to posterior model probabilities. Rather than choosing a single model, a natural way to deal with model uncertainty is to use the posterior model probabilities to average out the inference The New Palgrave Dictionary of Economics, Palgrave Macmillan, reproduced with permission of Palgrave Macmillan.

Keyphrases

bayesian method    bayesian time series analysis    model uncertainty    bayes factor    palgrave macmillan    time series    markov switching    key goal    posterior model probability    bayesian analysis    state-space model    bayesian paradigm    last decade    statistical analysis    time-series analysis    arima model    bayesian inference entail    decision making    mixture model    single model    final section    formal way    so-called posterior odds    sequential learning    model probability    prior odds    recent approach    prior information    possible model    posterior distribution    nonparametric bayesian modelling    complex time series model    natural way    predictive distribution    new palgrave dictionary    small sample result    particular econometric model    bayesian framework    markov chain monte carlo method   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University