• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Spatiotemporal Multicast in Sensor Networks (2003)

Cached

  • Download as a PDF

Download Links

  • [www.cs.wustl.edu]
  • [www.cs.wustl.edu]
  • [www2.parc.com]
  • [www.cse.wustl.edu]
  • [www.comp.nus.edu.sg]
  • [www.cs.arizona.edu]
  • [www.cs.arizona.edu]
  • [mobilab.cse.wustl.edu]
  • [www.cse.wustl.edu]
  • [mobilab.cse.wustl.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Qingfeng Huang , Chenyang Lu , Gruia-Catalin Roman
Venue:IN SENSYS
Citations:65 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Huang03spatiotemporalmulticast,
    author = {Qingfeng Huang and Chenyang Lu and Gruia-Catalin Roman},
    title = {Spatiotemporal Multicast in Sensor Networks},
    booktitle = {IN SENSYS},
    year = {2003},
    pages = {205--217},
    publisher = {ACM Press}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Sensor networks often involve the monitoring of mobile phenomena, which can be facilitated by a spatiotemporal multicast protocol we call "mobicast". Mobicast is a novel spatiotemporal multicast protocol featuring a delivery zone that evolves over time. Mobicast can in theory provide absolute spatiotemporal delivery guarantees by limiting communication to a mobile forwarding zone whose size is determined by the global worst-case value associated with a compactness metric defined over the geometry of the network.In this work, we first studied the compactness properties of sensor networks with uniform distribution. The results of this study motivate three approaches for improving the e#ciency of spatiotemporal multicast in such networks. First, one may achieve high savings on communication overhead by slightly relaxing spatiotemporal delivery guarantees. Second, spatiotemporal multicast may exploit local compactness values for higher e#ciency for networks with non uniform spatial distribution of compactness. Third, for random uniformly distributed sensor network deployment, one may choose a deployment density to best support spatiotemporal communication. We also explored all these directions via mobicast simulation and results are presented in this paper.

Keyphrases

sensor network    spatiotemporal multicast    novel spatiotemporal multicast protocol    spatiotemporal multicast protocol    absolute spatiotemporal delivery guarantee    mobicast simulation    uniform distribution    deployment density    mobile phenomenon    high saving    local compactness value    compactness property    support spatiotemporal communication    delivery zone    global worst-case value    spatiotemporal delivery guarantee    sensor network deployment    non uniform spatial distribution   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University