• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Bayesian inference for (2008)

Cached

  • Download as a PDF

Download Links

  • [www.cl.cam.ac.uk]
  • [www.cl.cam.ac.uk]
  • [www-test.cl.cam.ac.uk]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Ulrich Paquet
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Paquet08bayesianinference,
    author = {Ulrich Paquet},
    title = {Bayesian inference for},
    year = {2008}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

ISSN 1476-2986Abstract 3 Bayes ’ theorem is the cornerstone of statistical inference. It provides the tools for dealing with knowledge in an uncertain world, allowing us to explain observed phenomena through the refinement of belief in model parameters. At the heart of this elegant framework lie intractable integrals, whether in computing an average over some posterior distribution, or in determining the normalizing constant of a distribution. This thesis examines both deterministic and stochastic methods in which these integrals can be treated. Of particular interest shall be parametric models where the parameter space can be extended with additional latent variables to get distributions that are easier to handle algorithmically. Deterministic methods approximate the posterior distribution with a simpler distribution over which the required integrals become tractable. We derive and examine a new generic α-divergence message passing scheme for a multivariate mixture of Gaussians, a particular modeling problem requiring latent variables. This algorithm minimizes local α-divergences over a chosen posterior factorization, and includes variational Bayes and expectation propagation as

Keyphrases

bayesian inference    posterior distribution    stochastic method    expectation propagation    particular modeling problem    multivariate mixture    variational bayes    local divergence    deterministic method    parametric model    observed phenomenon    chosen posterior factorization    model parameter    elegant framework    latent variable    uncertain world    intractable integral    simpler distribution    parameter space    particular interest    bayes theorem    new generic divergence message    normalizing constant    statistical inference    required integral    additional latent variable   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University