• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Treadmarks: Shared memory computing on networks of workstations (1996)

Cached

  • Download as a PDF

Download Links

  • [www.cs.rochester.edu]
  • [www4.informatik.uni-erlangen.de]
  • [www.cs.rice.edu]
  • [www.cs.swarthmore.edu]
  • [www.cs.toronto.edu]
  • [www.cs.rice.edu]
  • [www-db.stanford.edu]
  • [www.eecg.toronto.edu]
  • [www.eecg.toronto.edu]
  • [www.cs.rochester.edu]
  • [www.cs.rice.edu]
  • [www.cs.rice.edu]
  • [www.cs.rice.edu]
  • [www.cs.swarthmore.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Cristiana Amza , Alan L. Cox , Hya Dwarkadas , Pete Keleher , Honghui Lu , Ramakrishnan Rajamony , Weimin Yu , Willy Zwaenepoel
Venue:Computer
Citations:487 - 37 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Amza96treadmarks:shared,
    author = {Cristiana Amza and Alan L. Cox and Hya Dwarkadas and Pete Keleher and Honghui Lu and Ramakrishnan Rajamony and Weimin Yu and Willy Zwaenepoel},
    title = {Treadmarks: Shared memory computing on networks of workstations},
    journal = {Computer},
    year = {1996}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

TreadMarks supports parallel computing on networks of workstations by providing the application with a shared memory abstraction. Shared memory facilitates the transition from sequential to parallel programs. After identifying possible sources of parallelism in the code, most of the data structures can be retained without change, and only synchronization needs to be added to achieve a correct shared memory parallel program. Additional transformations may be necessary to optimize performance, but this can be done in an incremental fashion. We discuss the techniques used in TreadMarks to provide e cient shared memory, and our experience with two large applications, mixed integer programming and genetic linkage analysis. 1

Keyphrases

shared memory    data structure    synchronization need    mixed integer programming    parallel program    genetic linkage analysis    incremental fashion    shared memory abstraction    memory parallel program    treadmarks support    possible source    large application    additional transformation   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University