• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Learning low-level vision (2000)

Cached

  • Download as a PDF

Download Links

  • [www.stat.ucla.edu]
  • [www.merl.com]
  • [www.ai.mit.edu]
  • [people.csail.mit.edu]
  • [www.merl.com]
  • [www.merl.com]
  • [www.ai.mit.edu]
  • [people.csail.mit.edu]
  • [videoprocessing.ucsd.edu]
  • [www.merl.com]
  • [www.merl.com]
  • [www.cnbc.cmu.edu]
  • [www.cmlab.csie.ntu.edu.tw]
  • [www.merl.com]
  • [www.cnbc.cmu.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by William T. Freeman , Egon C. Pasztor
Venue:International Journal of Computer Vision
Citations:578 - 30 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Freeman00learninglow-level,
    author = {William T. Freeman and Egon C. Pasztor},
    title = {Learning low-level vision},
    journal = {International Journal of Computer Vision},
    year = {2000},
    volume = {40},
    pages = {2000}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We show a learning-based method for low-level vision problems. We set-up a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently propagate image information. Monte Carlo simulations justify this approximation. We apply this to the \super-resolution " problem (estimating high frequency details from a low-resolution image), showing good results. For the motion estimation problem, we show resolution of the aperture problem and lling-in arising from application of the same probabilistic machinery.

Keyphrases

low-level vision    markov network    learning-based method    factorization approximation    synthetic example    good result    motion estimation problem    monte carlo simulation    super-resolution quot    lling-in arising    high frequency detail    image scene pair    low-level vision problem    low-resolution image    propagate image information    aperture problem    probabilistic machinery    underlying scene   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University